St. John the Baptist, Findon

Policy for written calculations - Mathematics

Date: May 2023

Document summary

This document will be used from September 2023, when all calculation methods will be taught again. It sets out progression from mental methods through to standard formal written calculations.

Structured and images are used through all stages to ensure that concepts are understood and embedded. The concrete, pictorial and abstract (CPA) approach will be used in every classroom so that children can truly understand what it is they are doing, and why, rather than simply learning the written methods.

Precise mathematical vocabulary is used by all adults in school to reduce cognitive load and we encourage children to do the same.

It is important to offer calculations in a range of representations. This includes part, part whole; bar modelling; the tens frame; missing numbers and expressions where the = sign is not always in the traditional place.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method no regrouping.	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column methodno regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays-showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digitconcrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digit-concrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit numberinterpret remainders as whole numbers, fractions or round)

CALCULATION POLICY FOR ADDITION

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. shells, teddy bears etc.)	Children to represent the counters using dots.	$4+3=7$ (four is a part, 3 is a part and the whole is seven.)
Counting on using number lines by using cubes or Numicon.	A bar model which encourages the children to count on rather than count all. \square	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2? 4+2
Regrouping to make 10; using ten frames. $6+5$	Children to draw the tens frame.	Children to develop an understanding of equality. e.g. $\begin{aligned} & 6+ \\ & 6+5=5+ \\ & 6+5=+4 \end{aligned}$

TO+O: using base 10 to develop understanding of partitioning and place value. $41+8=$	Children to represent the base 10. e.g. lines for tens and dots for ones.	$=41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$
TO+TO; using base 10 to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10 in a place value chart.	Looking for ways to make 10.

Use of place value counters to add HTO +TO, HTO+HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten; when there is 10 tens in the 10 s columnwe exchange for 1 hundred.

Children to represent the counters in a place value chart, circling when they make an exchange.

If the children are completing a word problem, draw a bar model to represent what it's asking them to do.

$?$	
243	368

243

11

Conceptual Variation, different ways to ask children to solve $21+34$

MENTAL CALCULATIONS FOR ADDITION

These are a selection of mental calculation strategies:
It is very important that children know and can use their number facts.

Mental recall of number bonds
$6+4=10$
$\square+3=10 \quad 25+75=100$
$19+\square=20$

Use near doubles
$6+7=$ double $6+1=13$

Addition using partitioning and recombining
$34+45=(30+40)+(4+5)=79$

Counting on or back in repeated steps of 1, 10, 100, 1000
$86+57=143$ (by counting on in tens and then in ones) $\quad 460-300=160$ (by counting back in hundreds)
Add the nearest multiple of 10,100 and 1000 and adjust
$24+19=24+20-1=43$
$458+71=458+70+1=529$

Use the relationship between addition and subtraction
$36+19=55$
$19+36=55$
$55-19=36$
$55-36=19$

MANY MENTAL CALCULATION STRATEGIES WILL CONTINUE TO BE USED. THEY ARE NOT REPLACED BY WRITTEN METHODS.

CALCULATION POLICY FOR SUBTRACTION

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole. $4-3=1$	Children to draw the concrete resources they are using and cross out. The bar model can also be used.	$4+3=1$
Counting back (using number line or number tracks) Children to start with 6 and count back 2.	Children to represent what they see pictorially.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line.

Finding the difference;	Children to draw the counters/other concrete objects which they have used. The children should be encouraged to use the bar model.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to 9-6=8-
Making 10; using the tens frames. $14-5=$	Children to present the tens frame pictorially and discuss what they did to make 10.	14-5 $=9$ You also want children to see related facts e.g. 15-9 $=5$ Children to represent how they have solved it e.g. $\begin{array}{ll} 14-5=9 & \begin{array}{l} 14 \text { is mode up of } 5,5 \text { and } 4 \text { so I } \\ \text { can subtract one } 5 \text { to be left with } \\ 4 \text { and } 5 \end{array} \\ 5 & \begin{array}{l} 5 \text { is made up of } 4 \text { and } 1 \text { so I can } \\ \text { sabtroct } 4 \text { to moke } 10 \text { and then } 1 \\ \text { to get to } 9 \end{array} \end{array}$ Children to show how they can make 10 by partitioning.

Column method; using place value counters.

234-88

Represent the place value counters pictorially; remembering to show what has been exchanged.

Formal column method. Children must understand what has happened when they have crossed out digits.

Conceptual Variation, different ways to ask children to solve 391-186

		Raj spent £391, Timmy spent £186. How much more did Raj spend? Calculate the difference between 391 and 186.	$-\underline{i}=391-186$391$\underline{-186}$What is 186 less than $391 ?$	Missing digit calculations		
391						5
186	?			Whar's the colculation? What's the answer?		
				000	$\begin{aligned} & 09 \\ & 092 \\ & 090 \\ & 808 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 008 \\ & 800 \end{aligned}$

MENTAL CALCULATIONS FOR SUBTRACTION

These are a selection of mental calculation strategies:
It is important that children know and can apply their number facts.
Mental recall of addition and subtraction facts
$10-6=4$
$17-\square=11$
$20-17=3$
$10-\square=2$

Find a small difference by counting up
$82-79=3$

Counting on or back in repeated steps of 1, 10, 100, 1000
86-52 = 34 (by counting back in tens and then in ones) $\quad 460-300=160$ (by counting back in hundreds)

Subtract the nearest multiple of 10,100 and 1000 and adjust
$24-19=24-20+1=5$
$458-71=458-70-1=387$

Use the relationship between addition and subtraction
$36+19=55$
$19+36=55$
$55-19=36$
$55-36=19$

MANY MENTAL CALCULATION STRATEGIES WILL CONTINUE TO BE USED. THEY ARE NOT REPLACED BY WRITTEN METHODS.

Key language which should be used: double times, multiplied by, the product of, groups of, lots of.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 There are 3 equal groups, with 4 in each group. $4+4+4$	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 12=3 \times 4 \\ & 4+4+4=12 \end{aligned}$
Number Lines to show repeated groups. 3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.	Abstract number line showing three jumps of four. $3 \times 4=12$

Use arrays to illustrate commutativity: (counters and other objects can also be used) $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply; using Numicon, base 10 or Cuisenaire rods. 15×4	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. A number line can also be used

When children start to multiply 3digit $\times 3$ digit and 4 digit $\times 2$ digit ... they should be confident with the abstract:

To get 744 children have solved 6×124
To get 2480 they have solved 20×124

Answer: 3224

Conceptual Variation, different ways to ask children to solve 6×23

23	23	23	23	23	23	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? Tom saved 23 p three days a week. How much did he save in 2 weeks?	Find the product of 6 and 23.$\begin{aligned} & 6 \times 23= \\ & {[1=6 \times 23} \\ & 6 \quad 23 \\ & \times \quad 23 \quad \times \quad 6 \\ & \hline \end{aligned}$	What is the calculation? What is the product?		
?								100s	10 s	15
									15 000 008 808 008 000	
Explain why... $6 \times 23=23 \times 6$										

MENTAL CALCULATIONS FOR MULTIPLICATION

These are a selection of mental calculation strategies:

Doubling and halving

Applying the knowledge of doubles and halves to known facts. e.g. 8×4 is double 4×4

Using multiplication facts

Tables should be taught every day from Y 1 onwards, either as part of the mental oral starter or other times as appropriate within the day. Pupils to be confident using the counting stick and able to recall and use multiplication and division facts.

Year $1 \quad x 2, x 5$ and $\times 10$ tables
Year $2 \quad x 2, x 5, x 10$ and $\times 3$ tables
Year $3 \quad x 3, x 6, x 4$ and $x 8$ tables
Year 4 all tables up to 12×12

Using and applying division facts
Children should be able to utilise their tables knowledge to derive other facts. e.g. If I know $3 \times 7=21$, what else do I know? $30 \times 7=210,300 \times 7=2100,3000 \times 7=21000,0.3 \times 7=2.1 \mathrm{etc}$

Use closely related facts already known
$13 \times 11=(13 \times 10)+(13 \times 1)=130+13=143$

Multiplying by 10 or 100

Knowing that the effect of multiplying by 10 is a shift in the digits one place to the left.
Knowing that the effect of multiplying by 100 is a shift in the digits two places to the left.

Partitioning

$23 \times 4=(20 \times 4)+(3 \times 4)=80+12=102$

Use of factors
$8 \times 12=8 \times 4 \times 3$

MANY MENTAL CALCULATION STRATEGIES WILL CONTINUE TO BE USED. THEY ARE NOT REPLACED BY WRITTEN METHODS.

CALCULATION POLICY FOR DIVISION

Key language which should be used: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$3 3
Repeated subtraction using Cuisenaire rods. $6 \div 2$ 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.

2 digit $\div 1$ digit with remainders; using lollipop sticks or Cuisenaire rods.
$13 \div 4$
Using lollipop sticks to form wholes squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.
Sharing using place value counters;
$42 \div 3=14$
000000

10 s	Is

10s	1s			
0	0000			
0	0000			
0	0000	$\quad$$\quad$	000000	
:---:	:---:	:---:		
10 s	1s			
0				
0				
0				

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4=3$ remainder 1

$$
\begin{aligned}
& 42+3 \\
& 42=30+12 \\
& 30+3=10 \\
& 12+3=4 \\
& 10+4=14
\end{aligned}
$$

Short division (Bus Stop): with place value counters to group.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Children to represent the counters pictorially.

Children to record the calculation using the short division scaffold.
${ }_{5} \stackrel{123}{61^{\prime} 5}$

Conceptual Variation, different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?
$5 \longdiv { 6 1 5 }$
$615+5=$
[-] $=615-5$

What is the calculation?

Long Division:

MENTAL CALCULATIONS FOR DIVISION

These are a selection of mental calculation strategies:

Doubling and halving

Knowing that halving is dividing by 2

Deriving and recalling division facts

Tables should be taught every day from Y 1 onwards, either as part of the mental oral starter or other times as appropriate within the day. Pupils to be confident using the counting stick and able to recall and use multiplication and division facts.

Using and applying division facts

Children should be able to utilise their tables knowledge to derive other facts. e.g. If I know $3 \times 7=21$, what else do I know?
$21 \div 3=7 \quad 21 \div 7=3 \quad 3=21 \div 7 \quad$ and $\quad 7=21 \div 3$

Dividing by 10 or 100

Knowing that the effect of dividing by 10 is a shift in the digits one place to the right.
Knowing that the effect of dividing by 100 is a shift in the digits two places to the right.

Use of factors
$378 \div 21$
$378 \div 3=126$
$378 \div 21=18$
$126 \div 7=18$

Use related facts
Given that $1.4 \times 1.1=1.54$
What is $1.54 \div 1.4$, or $1.54 \div 1.1$?

